Influence of stabilising agents and pH on the size of SnO2 nanoparticles

نویسندگان

  • Olga Rac
  • Patrycja Suchorska-Woźniak
  • Marta Fiedot
  • Helena Teterycz
چکیده

According to recent research, the use of nanoparticles as a gas-sensitive material increases the selectivity and sensitivity and shortens the response time of a sensor. However, the synthesis of SnO2 nanoparticles presents many difficulties. The following article presents a simple and inexpensive method for the synthesis of SnO2 nanoparticles. The influence of the surfactant and polymer choice on the size of the resulting nanoparticles was investigated and a mechanism describing their interaction was proposed. It was found that stable colloids of SnO2 nanoparticles are formed in the presence of both PEI and Triton X-100 surfactants as stabilising agents. However, an additional factor essential for good stabilisation of the nanoparticles was an appropriate acidity level of the solution. Under optimal conditions, nanoparticles having an average diameter of about 10 nm are reproducibly formed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and morphology characterization of SnO2 nanoparticles by hydrothermal method

Nanoparticles are widely used in different applications such as cancer cell treatment and antibacterial agents. SnO2 nanoparticles were synthesized successfully by hydrothermal method and subsequent calcination using Tin (II) chloride- dihydrate, Sodium hydroxide, in presence of Hexadecyltrimethylammoniumn bromide (CTAB) as Surfactant. These nanoparticles were characterized by using Fourier tra...

متن کامل

Synthesis and morphology characterization of SnO2 nanoparticles by hydrothermal method

Nanoparticles are widely used in different applications such as cancer cell treatment and antibacterial agents. SnO2 nanoparticles were synthesized successfully by hydrothermal method and subsequent calcination using Tin (II) chloride- dihydrate, Sodium hydroxide, in presence of Hexadecyltrimethylammoniumn bromide (CTAB) as Surfactant. These nanoparticles were characterized by using Fourier tra...

متن کامل

Characterization of nanostructured SnO2 thin film coated by Ag nanoparticles

Nanostructured SnO2 thin films were prepared using Electron Beam-Physical Vapor Deposition (EB-PVD) technique. Then Ag nanoparticles synthesized by laser-pulsed ablation were sprayed on the films. In order to form a homogenous coated of SnO2 on the glass surface, it was thermally treated at 500°C for 1 h. At this stage, the combined layer on the substrate was completely dried for 8 h in the air...

متن کامل

Influence of Temperature, Time, pH, Capping Agent Concentration and Zn/Se Molar Ratio on Morphology and Phase Evolution of Zinc Selenide Nanoparticles Synthesized by Hydrothermal Method

The aim of the study was to investigate the effect of temperature, time, pH, capping agent concentration (mercaptoacetic acid), Zn to Se and Se to reducing agent (NaBH4) mole ratios on morphology, phase developments and size of zinc selenide nanoparticles prepared by hydrothermal method. Characterization of zinc selenide nanoparticles was performed by Field Emission Electron Microscopy (FESEM),...

متن کامل

Microwave–Assisted Hydrothermal Synthesis and Optical Characterization of SnO2 Nanoparticles

Semiconductor nanoparticles exhibit size dependent properties due to quantum confinement effect that are not present in their bulk counterparts. In this work, extremely fine and pure SnO2 nanoparticles of ~1.1 nm size were synthesized by a solution process, in which amorphous precipitate of SnO2 was crystallized by microwave heating. The particles sizes varied from ~1.1 to ~2.7 nm. By XRD analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014